Dominant and novel clades of Candidatus Accumulibacter phosphatis in 18 globally distributed full-scale wastewater treatment plants
نویسندگان
چکیده
Here we employed quantitative real-time PCR (qPCR) assays for polyphosphate kinase 1 (ppk1) and 16S rRNA genes to assess relative abundances of dominant clades of Candidatus Accumulibacter phosphatis (referred to Accumulibacter) in 18 globally distributed full-scale wastewater treatment plants (WWTPs) from six countries. Accumulibacter were not only detected in the 6 WWTPs performing biological phosphorus removal, but also inhabited in the other 11 WWTPs employing conventional activated sludge (AS) with abundances ranging from 0.02% to 7.0%. Among the AS samples, clades IIC and IID were found to be dominant among the five Accumulibacter clades. The relative abundance of each clade in the Accumulibacter lineage significantly correlated (p < 0.05) with the influent total phosphorus and chemical oxygen demand instead of geographical factors (e.g. latitude), which showed that the local wastewater characteristics and WWTPs configurations could be more significant to determine the proliferation of Accumulibacter clades in full-scale WWTPs rather than the geographical location. Moreover, two novel Accumulibacter clades (IIH and II-I) which had not been previously detected were discovered in two enhanced biological phosphorus removal (EBPR) WWTPs. The results deepened our understanding of the Accumulibacter diversity in environmental samples.
منابع مشابه
Dominant Candidatus Accumulibacter phosphatis Enriched in Response to Phosphate Concentrations in EBPR Process
Candidatus Accumulibacter phosphatis (Accumulibacter), which plays an important role in enhanced biological phosphorus removal in wastewater treatment plants, is phylogenetically classified into two major types (Types I and II). Phosphate concentrations affect the Accumulibacter community of the biomass enriched in treatment plants. Therefore, in the present study, Accumulibacter enrichments we...
متن کامل“Candidatus Propionivibrio aalborgensis”: A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants
Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater by wasting the biomass. However, glycogen accumulating organisms (GAOs) may reduce the EBPR efficiency...
متن کاملFunctionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States.
The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of v...
متن کاملDevelopment of Quantitative Real-time PCR Assays for Different Clades of "Candidatus Accumulibacter".
We designed novel quantitative real-time polymerase chain reaction (qPCR) primers for the polyphosphate kinase 1 (ppk1) gene, targeting eight individual "Candidatus Accumulibacter" (referred to as Accumulibacter) clades. An evaluation of primer sets was conducted regarding the coverage, specificity, and PCR efficiency. (i) All primer sets were designed to cover all available sequences of the ta...
متن کاملGranule formation mechanisms within an aerobic wastewater system for phosphorus removal.
Granular sludge is a novel alternative for the treatment of wastewater and offers numerous operational and economic advantages over conventional floccular-sludge systems. The majority of research on granular sludge has focused on optimization of engineering aspects relating to reactor operation with little emphasis on the fundamental microbiology. In this study, we hypothesize two novel mechani...
متن کامل